Lục giác kỳ diệu

Chúng ta đã biết đến nhà toán học Pascal qua tam giác số nổi tiếng - gọi là tam giác số Pascal - mà các hệ số của nó dùng để khai triển nhị thức Newton. Hôm nay chúng ta sẽ giới thiệu một định lý hình học mang tên ông, đó là Định lý Lục Giác Kỳ Diệu. Định lý lục giác kỳ diệu của Pascal nói rằng nếu chúng ta vẽ một hình lục giác nội tiếp một đường tròn thì ba cặp cạnh đối diện của hình lục giác cắt nhau tại ba điểm thẳng hàng.

Định lý Ceva và Định lý Menelaus

Hôm nay chúng ta sẽ học về hai định lý hình học, đó là định lý Cevađịnh lý Menelaus. Hai định lý này được dùng rất nhiều trong hình học phẳng bởi vì chúng cho phép chúng ta chứng minh về các điểm thẳng hàng và các đường thẳng đồng quy. Chúng ta sẽ sử dụng một định lý về tỷ lệ diện tích tam giác để chứng minh hai định lý này. Cuối cùng, chúng ta sẽ mở rộng định lý Ceva và định lý Menelaus cho các đa giác bất kỳ.



Định lý Pitago

Định lý Pitago chắc chắn là một trong những định lý nổi tiếng nhất trong toán học. Định lý này nói rằng trong một tam giác vuông thì bình phương cạnh huyền bằng tổng bình phương của hai cạnh góc vuông.

Định lý Pitago: $c^2 = a^2 + b^2$.

Định lý Pitago có rất nhiều cách chứng minh. Nhưng có một cách chứng minh khá là thú vị vì nó được tìm ra bởi vị Tổng thống thứ 20 của Hoa Kỳ - ông James Abram Garfield.

Cách chứng minh của Tổng thống Garfield rất đơn giản. Cách chứng minh này dựa vào cách tính diện tích của hình thang sau đây bằng hai cách khác nhau.

Hình thang này có hai cạnh đáy là $a$ và $b$, còn đường cao là $a+b$. Do đó diện tích của hình thang là $$\frac{1}{2}(a+b)(a+b) = \frac{1}{2}(a^2 + b^2 + 2ab).$$

Cách thứ hai để tính diện tích của hình thang là lấy tổng của diện tích ba hình tam giác con, đó là $$\frac{1}{2}ab + \frac{1}{2} c^2 + \frac{1}{2}ab = \frac{1}{2}(c^2 + 2ab).$$

So sánh hai kết quả trên, chúng ta rút ra được định lý Pitago! $$c^2 = a^2 + b^2.$$